Course curriculum

  • 1

    Introduction

  • 2

    Apache Spark Basics (Optional)

    • Introduction to Spark

    • Free Account creation in Databricks

    • Provisioning a Spark Cluster

    • Basics about notebooks

    • Why we should learn Apache Spark?

    • Spark RDD (Create and Display Practical)

    • Spark Dataframe (Create and Display Practical)

    • Anonymus Functions in Scala

    • Extra (Optional on Spark DataFrame)

    • Extra (Optional on Spark DataFrame) in Details

    • Spark Datasets (Create and Display Practical)

  • 3

    Apache Spark Machine Learning

    • Types of Machine Learning

    • Steps Involved in Machine Learning Program

    • Spark MLlib

    • Importing Notebook and Data Upload

    • Basic statistics Correlation

      FREE PREVIEW
    • Data Sources

    • Data Source CSV File

      FREE PREVIEW
    • Data Source JSON File

    • Data Source LIBSVM File

    • Data Source Image File

      FREE PREVIEW
    • Data Source Arvo File

    • Data Source Parquet File

    • Machine Learning Data Pipeline Overview

    • Machine Learning Project as an Example (Just for Basic Idea)

    • Machine Learning Pipeline Example Project (Will it Rain Tomorrow in Australia) 1

      FREE PREVIEW
    • Machine Learning Pipeline Example Project (Will it Rain Tomorrow in Australia) 2

    • Machine Learning Pipeline Example Project (Will it Rain Tomorrow in Australia) 3

    • Components of a Machine Learning Pipeline

    • Extracting, transforming and selecting features

    • TF-IDF (Feature Extractor)

    • Word2Vec (Feature Extractor)

    • CountVectorizer (Feature Extractor)

    • FeatureHasher (Feature Extractor)

    • Tokenizer (Feature Transformers)

    • StopWordsRemover (Feature Transformers)

    • n-gram (Feature Transformers)

    • Binarizer (Feature Transformers)

    • PCA (Feature Transformers)

    • Polynomial Expansion (Feature Transformers)

    • Discrete Cosine Transform (DCT) (Feature Transformers)

    • StringIndexer (Feature Transformers)

    • IndexToString (Feature Transformers)

    • OneHotEncoder (Feature Transformers)

    • SQLTransformer (Feature Transformers)

    • VectorAssembler (Feature Transformers)

    • RFormula (Feature Selector)

    • ChiSqSelector (Feature Selector)

    • Classification Model

    • Decision tree classifier Project

    • Logistic regression Model (Classification Model It has regression in the name)

    • Naive Bayes Project (Iris flower class prediction)

    • Random Forest Classifier Project

    • Gradient-boosted tree classifier Project

    • Linear Support Vector Machine Project

    • One-vs-Rest classifier (a.k.a. One-vs-All) Project

    • Regression Model

    • Linear Regression Model Project

    • Decision tree regression Model Project

    • Random forest regression Model Project

    • Gradient-boosted tree regression Model Project

    • Clustering KMeans Project (Mall Customer Segmentation)

    • Explanation of few terms used in Model

  • 4

    Download Resources

    • Download Resources

    • Thank you